

Doc No.	FTR02-2017
Issue No.	1
Date	17 Nov 2017
Page No	1 of 50

Title:- Flight Test Report – Certification Compliance Testing of Sherwood Ranger ST Microlight Aircraft G-TLAC

..... Chris Taylor Written

ISSUE RECORD

ISSUE	DATE	REASON FOR RE-ISSUE	WRTN	
1	17 Nov 17	Initial issue.	СТ	

Note. This document is updated as a whole and not as individual pages.

1 INTRODUCTION

The Sherwood Ranger was originally designed by Russ Light (allegedly named after a Retford, Notts inn) and first flew in 1992. Several versions of the Ranger have been built, with different maximum take-off weights (MTOW) and engines. The early aircraft were built as the LW variant, with a MTOW of 390 kg (860 lb) and with engines in the 37-49 kW (50-65 hp) power range. Engines fitted include the 48 kW (64 hp) Rotax 532, the similar 48 kW (64 hp) Rotax 582 two cylinder two stroke engine and the 64 kW (85 hp) Jabiru 2200 flat four.¹ Some were later built as, or upgraded to, an MTOW of 450 kg (992 lb), the ST variant standard. Some of these use the Rotax 582 or Jabiru engines and one is fitted with a BMW RS1100. The LW is no longer offered but the ST is available for building from plans, kit or quick build kit. The XP variant has short span wing (7.07 m; 23 ft 0 in) to provide aerobatic capability and can be fitted with engines rated up to 75 kW (100 hp)

Twelve Sherwood Ranger kits were produced by TCD until the death of Russ Light, after which the company ceased to trade. TLAC acquired the rights in 2007and flew their first prototype on 31 July 2009. Some confusion had arisen over previous testing particularly with regard to centre of gravity calculations. Additionally only minimal inadvertent spin recovery testing had been completed. The aim of this test programme was to complete a complete professional certification test programme for submission to both the Light Aircraft Association (LAA) and the British Microlight Association (BMAA).

Flight Test Report

 Doc No.
 FTR02-2017

 Issue No.
 1

 Date
 17 Nov 2017

 Page No
 4 of 50

2 ABBREVIATIONS USED

AC	Advisory Circular
agl	above ground level
AMC	Acceptable Means of Compliance
ATSU	Air Traffic Service Unit
BMAA	British Microlight Aircraft Association
CAA	UK Civil Aviation Authority
C of g	Centre of Gravity
CS	Certification Specifications
EASA	European Aviation Safety Agency
ETPS	Empire Test Pilots School
FAA	Federal Aviation Administration
FBS	Full Back Stick
FTP	Flight Test Plan
FTS	Flight Test Schedule
HQ	Handling Qualities
LSS	Longitudinal Static stability
NTPS	National Test Pilot School
PFLF	Power for Level Flight
SHSS	Steady Heading Sideslip
VMC	Visual Meteorological Conditions
Vs	Stall Speed
Vs0	Stall Speed Landing Config
Vs1	Stall Speed other than Vs0

3 AIRCRAFT & MODIFICATION DESCRIPTION

The Sherwood Ranger was a relatively conventional biplane not dissimilar to a scaled down Tiger Moth. Its wings had 3.83° of sweepback and 3° of dihedral on the lower wing alone but no stagger. The wings were of constant chord and were of mixed construction, with single aluminium spars and drag struts, plywood covered D-box leading edges, ply and spruce ribs and fabric covering. There were externally interconnected Frise ailerons on both upper and lower wings. The wings were foldable for transport.

The fuselage of the Sherwood Ranger was of an aluminium tube structure, with ply formers and spruce stringers, and was fabric covered apart from glass fibre mouldings in the engine and cockpit areas and forming the rear decking. The nose was quite slender; the separate open cockpits were in tandem with the forward one a little behind the leading edge of the wing and the other under the trailing edge, where a slight upper wing cut-out improved the pilot's view. The fin was integral with the fuselage structure and carried a deep, rounded rudder which extended to the lower fuselage. The fixed conventional undercarriage had mainwheels, fitted

Doc No.	FTR02-2017
Issue No.	1
Date	17 Nov 2017
Page No	5 of 50

with heel operated brakes, on split axles mounted from a bungee sprung compression frame below the central fuselage and hinged by faired, V-form legs to its lower longerons. There was a bungee sprung, tailwheel with limited breakout.

Flying controls were conventional with an elevator trimmer operated by cable and lever on the right hand side of the cockpit. There were no flaps.

The aircraft was fitted with a Rotax 582 Two stroke engine driving a 3 bladed (ground adjustable) prop.

4 PURPOSE

The flight testing was to complete formal certification compliance testing. Testing was conducted against

• CAP 482 British Civil Airworthiness Requirements - Section S - Small Light Aeroplanes Issue 6 dated:31 May 2013.

5 CATEGORY OF FLIGHT TEST

A national rather than EASA flight test programme however this flight trial was determined to be a Category 1 Flight Test.

6 STATEMENTS

The aircraft tested was:

A/C Reg : G-TLAC PFA 237B-13895

7 PHILOSOPHY

7.1 Objective

The objective of the Flight Test Programme was to conduct a standard certification flight test programme gathering the required data to demonstrate compliance with BCAR Section S Issue 6.

7.2 Philosophy of Flight Testing

Generally the flight testing of the modified aircraft fell into three categories

- Handling Qualities/Stability and Control
- Performance including stalling
- Ballast was added to obtain a c of g at the required c of g envelope limit.

7.3 Test Criteria

Handling Qualities/Stability and Control: Testing was conducted 100-5000ft Hp.

Performance: Performance testing was predominantly conducted 100-5000ft Hp. Stall speeds and climb performance was obtained at full forward c of g and as close to MAUW as possible.

Test Envelope: The aircraft was tested at up to 5,000 ft Hp and up to the forward and aft limits of c of g.

7.4 HQ and Performance Assessment Methodology

No novel test techniques were required. Performance testing was conducted where relevant iaw CAP 1038 CAA Check Flight Handbook and AC 23-8C Flight Test Guide for the Certification of Part 23 Airplanes. Handling Qualities testing was conducted iaw the above documents and ETPS standard test techniques as previously employed by the CAA Flight Test Department. Pressure Error data was gathered using the 3 leg (Triangle Method) provided by NTPS or by flying into and downwind legs at the same altitude and noting ground speed. Additionally the company had previously gathered PE data and used the BMAA technical procedure to analyse the results.

7.5 Data Analysis

Climb performance data was gathered using reciprocal climbs and the data averaged to provide a mean ROC. Weight effects were negligible as the climbs were conducted within 1-2 kg of each other. The loss of performance resulting in testing not being conducted at Sea Level will not be factored and will be used to provide conservatism in the results. PE data was analysed using the NTPS spreadsheet where relevant. Stick force per g has been plotted.

8 FLIGHT TESTS

8.1 Test Instrumentation

Forces were measured using a hand held force gauge from ETPS. GPS Navigation devices including Garmin & IPad were used to provide GPS ground speed and track.

8.2 Objective

The objective of the Flight Test Programme was to complete a full section S certification programme but was to specifically address specific concerns raised during previous flight testing achieved to date. Those concerns related to minimalist spin recovery testing. The objective was to ensure these aspects of the aircraft comply with the certification requirement and conduct sufficient further testing to demonstrate that the aircraft remains compliant with BCAR Section S.

8.3 Section S requirements

In combination with previous and subsequent testing the following Section S requirements are being assessed:

S 21 Proof of Compliance S23 Load Distribution Limits S45 Performance General S49 Stalling Speed S51 Take-off S65 Climb S71 Rate of Descent S75 Landing S143 Controllability and manoeuvrability S145 Longitudinal Control S147 Lateral and Directional Control S155 Pitch Force in manoeuvres S161 Trim S171 Stability General S173 Static longitudinal stability S175 Demonstration of static longitudinal stability S177 Static directional stability S181 **Dynamic Stability** S201 Stalls S203 **Turning Flight Stalls** S207 Recovery From the Stall S221 Spinning S233 **Directional Stability & Control** S235 Take-off in Cross Winds S251 Vibration and buffeting

Flight Test Programme

An initial shakedown and data gathering flight was flown with mid c of g followed by both full aft and full forward c of g flights. Testing was conducted out of Little Snoring Airfield(Norfolk) on 13 & 14 November in suitable weather conditions which included a very light wind day which allowed good take-off and landing performance data to be gathered.

Pressure Error data had been gathered previously however this was revalidated at 3 airspeeds indicating an over-reading of the ASI at slow speed of 3 MPH

Ranger	Ranger Testing							
Serial	Date	T/O	Ldg	Time	T/OAU W	CG mm AoD	Fuel	Ldg Fuel
1	13/11/17	1530	1615	0:45	341 Kg	118 mm Mid	40 Lts	
2	14/11/17	1100	1200	1:00	353	197 Aft	21	10
3	14/11/17	1245	1300	0:15	450	Mid	40	35
4	14/11/17	1330	1400	0:30	390	55-60mm Fwd	40	20
5	14/11/17	1415	1445	0:30	450	160mm	30	20
6	14/11/17	1515	1600	0:45	353	197 Aft	21	10
			Total	3:45				
	NOTE: no PFR for Sortie 3 which was simply a famil flight in the front cockpit with safety pilot in							
	the rear. To test at full forward cg aircraft had to be flown from front cockpit with just 50kg ballast on rear seat.							

Results

The flight test results presented in this report are to support an application for certification against BCAR Section S. This report aims to address the requirements of Sub-Section B Flight Paras S21 –S251. A cockpit assessment was completed which allowed aspects of Sub-Section F Equipment to be addressed.

Sub-Section F

The cockpit of the aircraft was simple but functional. The seat had no adjustment. Rudder pedals were fixed. The joystick was conventional and fitted with a radio PTT switch. The instrument panel was functional with all fitted gauges being easy to read and all switches easy to reach and operate. Brakes were heel operated.

The aircraft complied with Section S as follows:

S1301 Function and Installation

1. Each item of equipment fitted in the cockpit was of a kind/design appropriate to its intended function.

Complied with S1301.a. 1

S1301 a) 3. The installed equipment functioned properly throughout the test programme. Ambient temperatures of $-5 \,^{\circ}$ C to $+12 \,^{\circ}$ C were experienced without difficulty. The aircraft was tested in light rain.

Complied with S1301.a. 3

S1301 b) The instruments and other equipment did not constitute a hazard to the safe operation of the aircraft throughout the test programme.

Complied with S1301.b

S1303 1 & 2

The aircraft was fitted with fully functioning ASI calibrated to read in MPH and an altimeter with a Hp/Mb subscale.

Complied with S 1303 1&2

S1305 a) Powerplant Instruments

The aircraft was fitted with conventional analogue gauges which allowed the engine manufacturer's limitations to be complied with.

S1305 b)

The aircraft was fitted with a digital fuel contents gauge which appeared to be sufficiently accurate for this class of aircraft. Satisfactory

S1305 c)

The a/c engine was conventional Rotax 582 with oil tank dip stick.

Complied with S 1305

S1307 a/b Safety Harness

The aircraft was fitted with a 4 point harness with a quick release mechanism. The lap straps gave good torso restraint. The harness was assessed as fit for purpose in that it gave good occupant restraint when tight.

The harness was not sufficiently long to contact the propeller even when unsecured.

Complied with S1307.

S1321 Instruments Arrangement and Visibility

The flight instruments (Slip ball) were clearly visible to the pilot and easy to read.

Complied with S1321

S1323 Airspeed Indicator

a) The ASI was calibrated by TLAC. Complied with S1323.

Sub Section B – Flight

General

S21 Proof of Compliance

- a) The aircraft was tested with a full forward c of g by flying the aircraft from the front cockpit with the rear cockpit empty. It was tested at an extreme aft c of g by adding ballast under the pilot's seat in the rear cockpit. The aircraft was tested at 450 Kg with 2 POB for the heavy test points, and tested as light as possible with 1 POB and minimal fuel.
- b) The aircraft was tested in all possible configurations. With fixed gear and a fixed pitch prop and no flaps there was a single configuration tested.

Complied with S21

S23 Load Distribution Limits

The ranges of c of g have been selected to be the worst possible fwd and aft c of g possibilities likely to be encountered.

Complied with S23

Weight Limits

The maximum weight had been established as 450 kg which was the highest weight selected by the applicant and was below the design maximum weight. 450 kg was more than (not less than) the weight of the a/c + 86 kg. And was more than a/c weight + 86 kg + max fuel.

Complied with S25

S29 Empty Weight and Corresponding c.g.

The empty weight of the test a/c was determined by weighing with fixed ballast, min equipment, unusable fuel, max oil.

Summary of CG Limits and Test Points

The aircraft was designed to have a MAUW of 450 KG with a cg range of 55 mm - 197 mm aft of datum. The aircraft was tested at MAUW from 340 Kg - 450 Kg and c of g from 55-197mm.

Performance

S45 General

All performance testing was done out of Little Snoring at 196 ft above Sea Level. Temperatures for submitted performance data was only slightly below ISA.

Complied with S45

Summary of Design Speeds

Kn CAS	V _{s0}	V _{s1}	Vx (Best angle) 55		Vy (Best climb) 55	
(calibrated)						
		-	-	-		
	V _A	Vh	V _{ne}	Vd		
Kn CAS (calibrated)			100	111		

S49 Stalling Speed

- a) Vso was tested predominantly with idle power set (throttle closed). The landing configuration was as per the cruise with no fitted flaps. Testing was conducted at 340-450 kg (MAUW)
- b) Vs1 was tested predominantly with idle power set (throttle closed). Testing was conducted at 340-450 kg (MAUW)
- c) The procedure from S201 was used.
- d) Testing with a full forward c of g stall speeds were as below.

Vs1/Vso Clean =

40 MPH

PE testing indicated that the PE was 3 MPH at the stall giving a Vso of 37 MPH (32kts).

Complied with S 49

S51 Take-Off

Good take off performance - 100 m

Complied with S51

S65 Climb

Previous testing had concluded the best rate of climb speed was 55 MPH. Two reciprocal 5 minute climbs were then conducted at MAUW at 55 MPH. The aircraft was established at full throttle at the targeted airspeed and climbed for a full 5 mins with the height noted every 30 seconds. The results were then plotted graphically. Approx 445 ft/min was achieved each time. The best rate of climb reduced with increasing altitude but was always consistently better than 250 ft/min at Sea Level allowing a climb to 1000 ft to be achieved in less than 4 mins. No temperature limits were exceeded.

Complied with S65

S71 Rate of Descent

The best glide speed was 55 MPH but 60 MPH was used to give better penetration into headwinds. 60 MPH was a good initial speed for forced landing profiles. Complied with S71

S75 Landing

A series of landings were flown to the grass & concrete runway 27 at Little Snoring and Runway 25 Grass. The initial approach was flown maintaining 60 MPH. Once at 15m/50 ft agl power was progressively reduced to idle and speed reduced to 50 MPH. At approx. 1-2m the aircraft was gently flared using up to full back stick eventually to plant the aircraft onto the ground in tail low or the 3 point (stalled) attitude. Landing distances were short considering no flaps were fitted.

Complied with S75

Controllability and Manoeuvrability

S143 General

- a) The aeroplane was safely controllable and manoeuvrable during a max power takeoff, climbs, level flight, descents, landing power on & off and following throttle chops to simulate engine failure.
- b) It was easy to make smooth transitions between all tested flight conditions with no more than average piloting skill. No unsafe flight conditions were experienced during testing. Tests were conducted at all permissible/possible power settings.
- c) No unusual flying characteristics were observed during testing. Flight in light rain/drizzle was assessed and was satisfactory.
- d) No marginal conditions existed with regard to pilot limits.

Complied with S143.

S145 Longitudinal Control

- a) It was possible at any speed below 1.3Vs1 to pitch the nose downwards so that a speed equal to Vs1 could be reached promptly. All configurations were tested at all power settings at fwd and aft c.g.
- b) There was only one configuration tested as no flaps were fitted.
- c) Vdf was tested at fwd and aft c.g and recoveries flown with idle power and up to max rpm applied. It was easy to pitch the nose up and recover from the Vdf dive.

Complied with S145.

S147 Lateral and Directional Control

Tested in same conditions as LSS = sat.

Complied with S147.

S155 Pitch Control Force

The Pitch control force during turns/when recovering from manoeuvres was tested at forward and full aft c of g using wind up turns and pull ups. In both turns to the left and right 6daN was pulled at approx. 2.0 g and 7 daN reached at less than 2.5g. It was very hard to get close to 3 g as the speed washed off quickly and large aft stick input was required. Stick forcer per g was very benign with good force & tactile cues throughout.

Complied with S155.

S161 Trim

Longitudinal trim could be adjusted to cope with speed and power changes and even at Idle power with full flap a trim condition was achieved.

Complied with S161.

Stability

S171 General

The aeroplane was tested and met S173 to 181 Inclusive. In addition throughout the flight test programme the aircraft showed suitable stability and control "feel" and no additional condition was expected to be encountered in service.

Complied with S171

S173 Static Longitudinal Stability

Throughout the LSS testing at speeds from 1.4 Vs1 to Vne the slope of the curve of control force versus speed was consistently positive and any significant speed change introduced a variation in control force that was always plainly perceptible to the pilot. Additionally where the aircraft could be trimmed to a given speed it tended to return to within 10% of that speed after being disturbed from the condition.

Complied with S173

S175 Demonstration of Static Longitudinal Stability (LSS)

LSS was tested in the conditions required as follows:

- a) Climb The full power climb at 55 MPH was stable. As speed was increased the stability became more positive. Holding a given airspeed was easy and the aircraft demonstrated positive stability at the recommended climb speed of 55 MPH.
- b) Cruise Positive static stability in all required configurations 5000 Rpm Max Continuous power used. Static stability assessed up to Vdf.
- c) Approach The recommended approach speed was 60 MPH with normal approach power being defined as 4000 rpm. Again positive stability was evident.

Complied with S175

S177 Lateral and Directional Stability

With the aeroplane in steady flight and when the roll and yaw controls were gradually applied in opposite directions any increase in sideslip angle corresponded to an increased deflection in joystick. In all sideslips the lateral stick force increased progressively with the amount of sideslip and did not reverse. It was noted that directional stability was weak and that maintaining ball centred flight required attention.

Complied with S177

S181 Dynamic Stability

The following requirements were met with the engine running at Idle, Cruise PFLF and full power.

a) Short Period Oscillations between Vs and Vne were heavily damped with the controls fixed and free.

b) The Lateral Directional Oscillations (LDO) were damped.

c) The phugoid was well damped and did not cause an unacceptable increase in pilot workload or otherwise endanger the aeroplane. When the conditions of S175 were tested and the controls released from the trim speed by 15% the response of the aircraft was benign and not excessive in relation to the magnitude of the control force released. Complied with S181

S201 Stalls

Stalling behaviour was investigated at full fwd and full aft c.g and at MAUW and as light as possible with 1 POB and minimal fuel.


a) Stalls were conducted by reducing the speed at approx. 1 MPH per second from Straight and Level flight until a stall was noted by a downward pitching moment and/or full back stick. At idle power the stall was defined by full back stick. No uncontrollable rolling motion was observed and roll and yaw could be produced with unreversed use of the controls until the stall occurred.

b) There was no tendency to spin at the stall as long as the recovery was not delayed. Minimal wing drop was sometimes evident but with a very gentle roll rate allowing the drop to be contained within 20° AOB with normal use of the controls.

c) The loss of altitude from the beginning of the stall to regaining level flight by applying normal procedures and the max nose down pitch attitude below the horizon was noted. The typical height loss was approx. 50 ft and no more than 10-15 degrees nose down was required for recovery.

d) Testing was conducted, trimmed at 1.4 Vs and with Idle power and at the throttle setting for 5000 rpm in the cruise.

Complied with S201

S203 Turning Flight Stalls

a) When stalled during a co-ordinated 30 °AOB turn it was possible to regain normal level flight without encountering uncontrollable rolling or spinning tendencies. On each occasion the aircraft naturally rolled off angle of bank at the stall.

b) The loss of altitude from the beginning of the stall until regaining level flight by applying normal procedures was determined and found to be approx. 50 ft. The testing was conducted with power idle and at the throttle setting for 5000 rpm in the cruise.

Complied with S203

S207 recovery from the Stall

a) It was possible to control the roll attitude of the aircraft up to the stall using the joystick alone and any tendency for excessive wing drop at the stall could be prevented.

b) The aircraft met the requirement of S207 in that with the rudder and ailerons fixed neutral no appreciable wing drop occurred. Additionally – although there was no obvious pre-stall buffet the open cockpit environment gave very clear audio, vibration, and wind speed indications to the flight allied with sloppy controls that a slow speed condition was being approached. It would not be possible to reach the stall without very clear indications to the pilot that he was flying slowly. The stall itself was then defined by full aft stick – any relaxation of this condition allowed the aircraft to be flown normally.

Complied with S207

S221 Spinning

A typical Part 23 spin matrix was conducted at mid, forward and aft c of g. There was only a single configuration as no flaps were fitted. Spins were entered with idle, full power or 5000 rpm selected at 5-10 MPH above the 40 MPH stall speed by selecting full aft stick and full rudder simultaneously. The spinning was incrementally progressed to allow an initial entry turn to be followed by a fully developed turn before spin recovery was initiated.

With full forward c of g a spin could not be entered without power as the aircraft fell instantly into a spiral dive. With power a spin could be entered but the aircraft recovered as soon as the throttle was closed. Forward c of g spinning was considered very benign.

With a mid c of g a spin could be entered in each direction at idle power and recovery could be achieved by applying opposite rudder alone.

With a full aft c of g the aircraft exhibited conventional spin characteristics reminiscent of a Tiger Moth type of aircraft. For all spins the aircraft recovered with full opposite rudder followed by easing the stick forward off the back stop by an inch or two. The aircraft recovered into a steep nose down dive. After a single 1 turn erect spin the aircraft could be recovered in no more than one additional turn by closing the throttle and centring the

Doc No.	FTR02-2017
Issue No.	1
Date	17 Nov 2017
Page No	18 of 50

controls (Incipient Spin Recovery). As usual into spin aileron tended to steepen and quicken the spin with out of turn aileron having the opposite effect. Once fully established in the spin after 2 turns moving the stick forward with full pro-spin rudder applied (reverse recovery) resulted in a higher rotational rate – however this resulting high speed spin could then be recovered conventionally.

In summary – Spin recovery of the aircraft was conventional and compliant with S221.

Ground Handling Characteristics

S233 Directional Stability and Control

Testing was conducted on dry and wet grass and concrete with wind speeds to 10-12 kts. There was no uncontrollable ground-loop tendency at any speed at which the aeroplane could be expected to operate on the ground and it had adequate directional control during taxiing. The brakes were effective in stopping the aircraft quickly although the heel operation required some attention.

Complied with S 233

S235 Take-Off and Landing in Cross Winds

During the period of testing cross wind components up to and including 10 kts were experienced. The take –off was flown conventionally with into wind aileron applied at the start of the take-off roll. The landing could be accomplished using either the "kick off for drift" or "wing down" technique. The latter was used due to personal preference by the test pilot but both techniques allowed safe and controllable landings. The aircraft coped well with the cross wind.

S251 Vibration and Buffeting

There was no excessive vibration at all airspeeds up to and including Vdf, nor was there any buffeting severe enough to interfere with the satisfactory control of the aeroplane, cause fatigue to the crew or result in structural damage. The testing included the engine running at all powers from idle to full throttle and included start up and shut down.

Conclusion

The Ranger was a very pleasant small aeroplane to fly similar to a scaled down Tiger Moth. It had a simple but well laid out cockpit with the minimal instrumentation being easy to read and use. The flying controls were well harmonised and it demonstrated appropriate static and dynamic stability. The performance for such a small engine was good. The aircraft was satisfactory to manoeuvre on the ground and the take-off and landings were all easy to fly with short take-off and landing distances evident. The aircraft fully met the requirements of BCAR Section S Issue 6.

Doc No.	FTR02-2017
Issue No.	1
Date	17 Nov 2017
Page No	19 of 50

9 TEST DATA

Flight Number / Configuration	Sortie 1 – Mid c of g	
Date	13 November 2017	
Overview	Shakedown flight – Pressure Errors – Qualitative Assessment of LSS, Lat Dir & Stick Force/g plus Phugoid & Dutch Roll. Idle Power Stalls Engine & prop handling – and flight to V _{DF} Take-off & landings Spinning at Mid cg	
Handling Pilot/P1	Chris Taylor	
Safety Pilot P2	N/A	
FTE	N/A	
AUW	341kg	
cg	mid	
Fuel T/O	Full 40 lts = 28.8kg	
Fuel Ldg	20kg	
ZFW	227.5 kg	

Airfield Altitude	196	ft	QFE	1008	mb
Wind	10-15	knots	OAT	3	°C
Weather (test area)	Good – Nil cloud minimal turbulence – Cold!				

Test Timings					
Off Chocks	1520	Landing	1615		
Take-Off	1530	On Chocks	1620		
Flying Time	0:45	Chock Time	1:00		

Ground Handling							
Test	Fuel	Wt					
Start	Full	450					
End	20kg	449					
to rudder - Brakes hee	All OK – Brakes worked well –Could 180 turn easily by braking inner wheel. Tail wheel connected to rudder – rudder without brake could be used for normal taxi and aircraft could be kept straight – Brakes heel operated – nowhere to place the heel apart form on the brake or "aloft" care required on landing. = sat						

řg 1 kts)	Track 1 (deg)	Vg 2 (kts)	Track 2 (deg)	Vg 3 (kts)	Track 3 (deg)	Vwind (kts)	Winddir (deg)	1500/12C root Sigma		CAS	Vtrue (kts)
~	07	20	10.8	10		16.5	226.0	0.0000		267	27.1
26 41	27 15	53 68	135 129	-13 52	205 214	16.5 16.7	326.9 315.2	0.9900		36.7 50.9	37.1 51.4
60	10	88	125	75	225	16.5	328.0	0.9900		72.4	73.1
						#DIV/0!	#DIV/0!	0.9900		#DIV/0!	#DIV/0!
						#DIV/0!	#DIV/0!	0.9900		#DIV/0!	#DIV/0!
						#DIV/0!	#DIV/0!	0.9900		#DIV/0!	# DI V/0!
					PEs	Rang	zer				
						C	,				
	120.0										
	-										
1	110.0 -										
1											
	100.0 +						/				
С	90.0 -										
A											
S	80.0										
м	70.0										
Р	-										
н	60.0										Series1
	50.0										
	40.0										
1	30.0 +										
	3(0 40	50	60	70	80	90	100	110	120	
					N	ЛРН					

Flight Test Report

203 Stal 207 Stal	speed I demons I characte I Recove	stration eristics ry & wa	Wings Le Turning I arning cs, G Bre	Flight				
Test	Fuel	Wt	Time	Pwr	Trim	Buffet	Stall	Wing Drop
Flaps 0	Full	340	1545	Idle	55	Nil	40 MPH	10 degrees – slow roll rate – full back stick

Controllability and Manoeuvrability 143 General S 143 General a) The aeroplane must be safely controllable and manoeuvrable during; 1) take-off at maximum take-off power; 2) any steady climb condition; 3) level flight; 4) descent: 5) landing, power on and off; and 6) with sudden engine failure. b) It must be possible to make a smooth transition from one flight condition to another (including turns, reversal of turns and slips) with no more than average piloting skill, alertness or strength, and without danger of exceeding the limit load factor, under any probable operating condition, with the engine running at all allowable power settings, including the effect of power changes and sudden engine failure. Modest departures from any recommended techniques must not cause unsafe flight conditions c) Any unusual flying characteristics observed during the flight tests required to determine compliance with the flight requirements and any significant variations in flight characteristics caused by rain must be determined with the engine running at all allowable powers. d) If marginal conditions exist with regard to pilot effort the 'pilot effort' limits must be shown by guantitative tests for a minimum weight pilot. In no case may the limits exceed those prescribed in the table shown in S.143. This requirement must be met with the engine running at all allowable **DOWERS.** Values in pounds of force as applied to the control wheel or rudder pedals. (a) For temporary application: Ρ R Y Stick-----20 10 _____ 25 20 Wheel (applied to rim)------_____ Rudder Pedal------_____ _____ 40 2 10 (b) For prolonged application. 1.5 Amdt 23-0 & Amdt. 23-14, Eff. 12/20/73 Condition of Note Comment All sat including response to throttle chop on climb out - gentle nose drop

S 161 Trim

The speeds to achieve lateral, longitudinal and directional trim must lie within 1.3 VS1 and 2.0 VS1 at all

engine powers and the extreme c.g. positions.

Test	Fuel	Wt	Time	MPH	Pwr	Considerations
Flap Up		340		1.3Vs1	PFLF	Assess Long & Directional Trim
Flap Up				2.0 Vs1	PFLF	Assess Long & Directional Trim
Flap Up				1.3Vs1	Idle	Assess Long & Directional Trim
Flap Up				2.0 Vs1	Idle	Assess Long & Directional Trim
Flap Up				1.3Vs1	Full	Assess Long & Directional Trim
Flap Up				2.0 Vs1	Full	Assess Long & Directional Trim
Flap Full				1.3Vs1	PFLF	Assess Long & Directional Trim
Flap Full				2.0 Vs1	PFLF	Assess Long & Directional Trim
Flap Full				1.3Vs1	Idle	Assess Long & Directional Trim
Flap Full				2.0 Vs1	Idle	Assess Long & Directional Trim
Flap Full				1.3Vs1	Full	Assess Long & Directional Trim
Flap Full				2.0 Vs1	Full	Assess Long & Directional Trim

Stick Force per G

S 155 Pitch control force in manoeuvres

The pitch control force during turns or when recovering from manoeuvres must be such that at a constant speed an increase in load factor is associated with an increase in control force. In addition:

Flight Test Report

a) For conventional control systems the minimum value of this force to apply to the aeroplane a normal acceleration which would impose limit load on the structure must not be less than 7 daN from a trimmed 1 g condition at all speeds up to VNE at which the required normal acceleration can be achieved without stalling, with wing-flaps and, where applicable, landing gear retracted.

Test Fuel Wt Time MPH Pwr	Considerations
---------------------------	----------------

The wind Up turns to 3G

L	27	339	80	MCP	
R			80	MCP	
L			Vne	MCP	
R			Vne	MCP	

Large control throw to pull g with speed quickly washing off – difficult to reach 2g -2.5g max reached – no concerns regarding further data gathering

Spinning – The spins were initiated with the throttle set as required to give idle power, 5000rpm or full power and the nose raised to slow down until 45-50MPH was reached when full back stick and full rudder was applied. Recoveries were commenced after $\frac{1}{4} \frac{1}{2} \frac{3}{4} 1$ or $\frac{1}{2}$ or 2 complete turns. With a mid cg the aircraft tended to recover as soon as the into spin rudder was neutralised or opposed. There was only one configuration as no flaps were fitted

Normal recovery was to close the throttle – apply full opposite rudder to the spin direction – then move the stick centrally forward progressively until the spin stopped.

Turns	Left/Right	Abuse	Recovery	Comment
1/4	L	Normal	Opposite Rudder	
1⁄4	R	Normal		
1/2	L	Normal		
1/2	R	Normal		
1	L	Normal		
1	R	Normal		
1-2	L	Power at 5000 rpm	Normal	
1-2	L	Full Power	Normal	
Spinning w	vith Mid cg was	benign. Recoveries w	vere easy with the a	ircraft tending to recover as

soon as rudder was applied. As a result the spin matrix with mid cg was reduced.

75 Normal Landing – Power Off							
Test	CG	Wt	Ht	MPH	Pwr	Considerations	
	Mid	335Kg		60	Idle	 (1) A steady gliding approach with a calibrated airspeed of at least [1.3] V_{S1} must be maintained down to the 50 foot height. (2) The landing may not require exceptional piloting skill or exceptionally favourable conditions. (3) The landing must be made without excessive vertical acceleration or tendency to bounce, nose over, ground loop, porpoise, or water loop. 	

Satisfactory - easy to round out - Undercarriage very forgiving - landed tail low - subsequently 3 point

75 Simulate	75 Simulated Emergency Condition Flapless Landing – Touch & Go						
Test CG Wt Ht KIAS Pwr Considerations							
4	4 A L 55 Idle Note change in pitch attitude at touch down						
Easy – cou	ld land	on ma	ain whee	ls or three po	oint - satis	sfactory	

51 Flapless	51 Flapless Take-Off – from Touch & Go							
Test	CG	Wt	Ht	KIAS	Pwr	Considerations		
5	А	L			Idle	Note change in pitch attitude at rotate		
Easy – tail o	could k	be rais	ed by for	rward moven	nent of the	e stick – aircraft flying off at 40-45 MPH.		

75 Vref-5 La	75 Vref-5 Landing –							
Test	CG	Wt	Ht	KIAS	Pwr	Considerations		
6	А	L		45	Idle			
						e stall and for a very short field landing 45-50 MPH good elevator control power.		

Flight Number / Configuration	Sortie 2 – Full Aft c of g
Date	14 November 2017
Overview	Full Aft cg = HQ $-LSS$, Lat Dir & Stick Force/g plus Phugoid & Dutch Roll. Stalls– and flight toV _{DF} Take-off & landings
Handling Pilot/P1	Chris Taylor
Safety Pilot P2	None
FTE	None
AUW	353 kg
cg	197mm aft (full aft)
Fuel T/O	21 lts = 15.5 kg
Fuel Ldg	10 lts
ZFW	337 kg (25 kg ballast on P1 seat)

Airfield Altitude	196	ft	QFE	1010	mb
Wind	180/5	knots	OAT	10	°C
Weather (test area)	Excellent	– light southerly v	vinds no turbi	ulence	

Test Timings								
Off Chocks	1050	Landing	1200					
Take-Off	1100	On Chocks	1205					
Flying Time	1:00	Chock Time	1:15					

Ground Ha	Ground Handling									
Test	Fuel	Wt								
Start	15kg	353								
End										
Satisfactor	ry – Aft	cg introc	luced no is	sues – eas	y to steer	and brakes efficient				

Basic/idle Stalling 49 Stall speed 201 Stall demonstration Wings Level 203 Stall characteristics Turning Flight 207 Stall Recovery & warning NB: Full back Stick 2 secs, G Break

Straight (thrust levers closed). Trim the aeroplane above 3000 ft AGL in the required configuration at 1.4 Vs with the throttle closed. Approach the stall in straight flight while decreasing speed at 1 knot/second. Recovery is to be completed by 3000 ft agl.

Test	Fuel	Wt	Time	Pwr	Trim	Buffet	Stall	Wing Drop
Flaps 0	14kg	352	1105	Idle	55	minimal	38 Full Back Stick FBS	Gentle (slow roll rate) wing drop if ball not centred at stall – could be prevented and was easily stopped in stall recovery = benign

49 Stall s 201 Stal 207 Stal	vanced Stalling Stall speed 1 Stall demonstration Wings Level 7 Stall Recovery & warning 3: Full back Stick 2 secs, G Break									
continue be carri the lanc VS0, ex	e idling; num co ous pow ed out w ling con cept tha	ntinuo er res vith the figurat at the p	ults in ex e power i ion at ma power ma	treme nos not less th aximum la ay not be l	se-up att an that r nding we less thar	o-weight ratio at ma itudes, demonstrati required for level flig eight and a speed o 175% maximum co rpm was used for	on may ght in of 1·4 ntinuous powe			
Test	Fuel	Wt	Time	Pwr	Trim	Buffet	Stall	Wing Drop		
Flaps 0	13kg	351	1110	5000rpm		Light	30	No		

49 Stall sp 203 Stall c 207 Stall F	Advanced Stalling 19 Stall speed 203 Stall characteristics Turning Flight 207 Stall Recovery & warning NB: Full back Stick 2 secs, G Break										
i) Engine ii) Maximu continuou be carried the landir VS0, exce	4) Power :) Engine idling; and i) Maximum continuous power, or, if the power-to-weight ratio at maximum continuous power results in extreme nose-up attitudes, demonstration may be carried out with the power not less than that required for level flight in the landing configuration at maximum landing weight and a speed of 1.4 VS0, except that the power may not be less than 75% maximum continuous power. Max rpm in level flight was 6100 rpm. 5000 rpm was used for power on stalls										
Test	Fuel	Wt	Time	Pwr	Trim	Buffet	Stall	Wing Drop			
Flaps 0 Left	12kg	350	1115	Idle	50	Light	40	Wings Levelled			
Flaps 0 Right				Idle	50	Light	40	Wings Levelled			
Flaps 0 Left				5000rpm	50	Light	35	Wings Levelled			
Flaps 0 Right				5000rpm	50	Light	35	Wings Levelled			

Flight Test Report

Doc No. FTR02-2017 Issue No. 1 Date 17 Nov 2017 29 of 50 Page No

S 143 General								
a) The aeroplane must be safely controllab	ole and manoeu	vrable during;						
1) take-off at maximum take-off power;								
) any steady climb condition;) level flight;								
) descent;								
5) landing, power on and off; and								
6) with sudden engine failure.								
 b) It must be possible to make a smooth tr turns, reversal of turns and slips) with no r 								
and without danger of exceeding the limit l								
with the engine running at all allowable po								
sudden engine failure. Modest departures from any recommended techniques must not cause unsafe flight conditions								
								U
c) Any unusual flying characteristics obser								
c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th	d any significant ne engine runnin	t variations in flig g at all allowable	ht characteristics powers.					
 c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard to 	d any significant te engine runnin to pilot effort the	t variations in flig g at all allowable 'pilot effort' limits	ht characteristics powers. s must be shown by					
 c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard to quantitative tests for a minimum weight pil 	d any significant ne engine runnin to pilot effort the ot. In no case m	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce	ht characteristics powers. s must be shown by eed those prescribed					
 c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard to quantitative tests for a minimum weight pil 	id any significant ne engine runnin to pilot effort the ot. In no case m nt must be met w	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce ith the engine ru	ht characteristics powers. s must be shown by eed those prescribed					
 c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard t quantitative tests for a minimum weight pil the table shown in S.143. This requirement 	id any significant ne engine runnin to pilot effort the ot. In no case m nt must be met w	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce ith the engine ru	ht characteristics powers. s must be shown by eed those prescribed					
c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard to quantitative tests for a minimum weight pil the table shown in S.143. This requirement powers. Values in pounds of force as applied to the	Id any significant the engine runnin to pilot effort the ot. In no case m the control wheel or r	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce ith the engine ru udder pedals.	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable					
 c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard t quantitative tests for a minimum weight pil the table shown in S.143. This requirement powers. Values in pounds of force as applied to the (a) For temporary application: Stick 	Id any significant the engine runnin to pilot effort the ot. In no case m the must be met w the control wheel or r	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce ith the engine ru udder pedals.	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable					
 c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with the d) If marginal conditions exist with regard to quantitative tests for a minimum weight pil the table shown in S.143. This requirement powers. Values in pounds of force as applied to the (a) For temporary application: 	id any significant ne engine runnin to pilot effort the ot. In no case m nt must be met w ne control wheel or r P 20	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce ith the engine ru udder pedals. R 10	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable					
c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard t quantitative tests for a minimum weight pil the table shown in S.143. This requirement powers. Values in pounds of force as applied to th (a) For temporary application: Stick Wheel (applied to rim) Rudder Pedal	id any significant ne engine runnin to pilot effort the ot. In no case m nt must be met w ne control wheel or r P 20	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce ith the engine ru udder pedals. R 10	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable Y 					
 c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard t quantitative tests for a minimum weight pil the table shown in S.143. This requirement powers. Values in pounds of force as applied to th (a) For temporary application: Stick Wheel (applied to rim) 	id any significant ne engine runnin to pilot effort the ot. In no case m it must be met w ne control wheel or r P 20 25 	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce ith the engine ru udder pedals.	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable Y 40					
 c) Any unusual flying characteristics obser compliance with the flight requirements an caused by rain must be determined with th d) If marginal conditions exist with regard to quantitative tests for a minimum weight pil the table shown in S.143. This requirement powers. Values in pounds of force as applied to th (a) For temporary application: Stick	id any significant ne engine runnin to pilot effort the ot. In no case m it must be met w ne control wheel or r P 20 25 	t variations in flig g at all allowable 'pilot effort' limits ay the limits exce ith the engine ru udder pedals.	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable Y 40					

The speeds to achieve lateral, longitudinal and directional trim must lie within 1.3 VS1 and 2.0 VS1 at all engine powers and the extreme c.g. positions.

•				01		
Test	Fuel	Wt	Time	MPH	Pwr	Considerations
Flap Up	11kg	349	1120	1.3Vs1	PFLF	Assess Long & Directional Trim
Flap Up				2.0 Vs1	PFLF	Assess Long & Directional Trim
Flap Up				1.3Vs1	Idle	Assess Long & Directional Trim
Flap Up				2.0 Vs1	Idle	Assess Long & Directional Trim
Flap Up				1.3Vs1	Full	Assess Long & Directional Trim
Flap Up				2.0 Vs1	Full	Assess Long & Directional Trim
All sat – no	issues	•				

Test	Fuel	Wt	Time	Pwr	Considerations
Flap Up	11 kg	349	1125	Idle	Apply Full Power – maintain speed
Only one (I with power			p) config t	to test – e	ffect of power conventional but attitude easily held

S 147 Lateral and directional control

a) Using an appropriate combination of controls, it must be possible to roll the aeroplane from a steady 30° banked turn through an angle of 60°, so as to reverse the direction of the turn within 5 seconds when the turns are made at speeds of 1.3 VS1 and at VNE.

b) N/A - (Applicable only if control is effected by weight shift

c) The tests required by a) and b) must be performed:

1) where applicable, with the landing gear and wing-flaps retracted and with the landing gear and wing-flaps extended;

2) without encountering uncontrollable rolling tendencies or uncommanded high roll rates; and

3) with any uncommanded pitching during the manoeuvre being readily controllable.

Test	Fuel	Wt	Time	MPH	Pwr	Time to Roll
Flap Up	10kg	348	1130	1.3Vs1	PFLF	4 secs L-R
Flap Up				1.3Vs1	PFLF	4 secs R-L
Flap Up				Vne	5500	3 secs L-R
Flap Up				Vne	5500	3 secs R-L

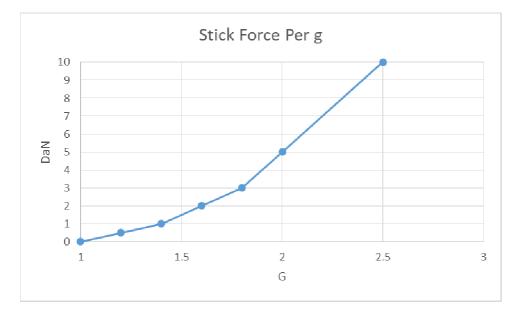
At low speed the aircraft felt sluggish in roll despite having large connected ailerons on both upper and lower wings. In practice roll control was more than sufficient for landing and take-off even in cross winds. At higher airspeed the roll control became conventionally crisp and effective.

Stick Force per G

S 155 Pitch control force in manoeuvres

The pitch control force during turns or when recovering from manoeuvres must be such that at a constant speed an increase in load factor is associated with an increase in control force. In addition:

a) For conventional control systems the minimum value of this force to apply to the aeroplane a normal acceleration which would impose limit load on the structure must not be less than 7 daN from a trimmed 1 g condition at all speeds up to VNE at which the required normal acceleration can be achieved without stalling, with wing-flaps and, where applicable, landing gear retracted.


Test	Fuel	Wt	Time	MPH	G	DaN		
The wind U	The wind Up turns to 3G							
	10kg	348	1135	80-100	1	0		
					1.1	0.5		

Doc No.	FTR02-2017
Issue No.	1
Date	17 Nov 2017
Page No	31 of 50

			1.4	1
			2	5-6
			2.5	10

Note – Turns left and right at MCP at 80 MPH and Vne 100 MPH – speed washed off very quickly – large aft stick displacement required – very obvious tactile cues – forces left and right the same – 7daN reached at approx. 2.2 g – well below 4g limit – compliant with Section S & satisfactory

23.251 Vibration and buffeting 23.253 High speed characteristics Dive to Vdf							
Test	Fuel	Wt	Time	MPH	Pwr	Considerations	
Clean	9kg	347	1145	111	55-6000		

NOTE	: This test m Start Altitude	ust not b 3000	e carried ft		turbul DAT	ent conditi 7 ºC		Schedu	led Vdf	111 MPH
	End Altitude	2000	ft	Ρ	Es	5		Vdf KIA	S Achieved?	111 MPH
						eft	Rigl	nt		
Weigh Engine	Any buffet or unusual vibrations ACC Weight and Response of flying Controls ACC Engine/Propeller behavior ACC It must be possible to recover from an overspeed condition at Vd using the primary longitudinal control alone									
Asses	s LSS = Very	/ Stable								
Asses	Assess LDO = Heavily damped									
	n all open co Vne with no								e aircraft continued to	accelerate

S 173 Static longitudinal stability

a) Under the conditions and throughout the speed range specified in S 175 the slope of the curve, control force versus speed, must be positive and have a value such that any significant speed change will cause a variation in control force plainly perceptible to the pilot.

b) 1) Where the aeroplane can be trimmed longitudinally the airspeed must return to within 10% of the original trim speed when the aeroplane is disturbed from the trimmed condition.

2) Where the aeroplane has no longitudinal trimmer the airspeed must return to within 10% of the trim speed required by S 161 in each configuration, when the aeroplane is disturbed from the trimmed condition.

S 175 **Demonstration of static longitudinal stability** The control force/speed curve must have a stable slope in the following conditions:

- a) Climb:
- 1) At 1.4 VS1;
- 2) Landing gear retracted;
- 3) Wing-flaps in the position for climb; and
- 4) Maximum power.
- b) Cruise:
- 1) At maximum level flight speed and VDF;
- 2) Landing gear retracted;
- 3) Wing-flaps retracted.
- c) Approach:
- 1) At the recommended approach speed;
- 2) Wing-flaps in the landing position;
- 3) Landing gear extended; and
- 4) Engine at normal approach power and with engine off.

Test	Fuel	Wt	Time	Power	OAT	-20kts	Trim Speed	+20kts
Climb 1.4Vs1	9kg	347	1150	Full	8		60	
Cruise				MCP	8		80	
Vdf				MCP	8		111	XXXXXXX
App Full Flap				Арр	8		60	
App Full Flap				Idle	8		60	
Aircraft -	- positiv	ve sta	tic stab	ility in all ca	ases – v	veak in full power	climb as typical	

S 177 Lateral and directional stability a) With the aeroplane in straight steady flight, and when the roll and yaw controls are gradually applied in opposite directions, any increase in sideslip angle must correspond to an increased deflection of the lateral control. This behaviour need not follow a linear law. b) In a sideslip any control force must increase progressively with sideslip; it need not be linear but must not reverse.

Test	Fuel	Wt	Time	Power	OAT	-10°	Trim	+10°
	9kg	347	1150					
Cruise 0.9Vh				PFLF	13			

Tested in cruise & same conditions as LSS – directionally and laterally stable throughout – weak directional stability – needed to pay attention to slip ball

S 181 Dynamic stability

a) Any short period oscillations not including combined lateral-directional oscillations occurring between the stalling speed and VDF must be heavily damped with the primary controls:
 1) Free;

2) Fixed.

b) Any combined lateral-directional oscillations occurring between the stalling speed and VDF must be damped with the primary controls:

1) Free;

2) Fixed.

c) Any long period oscillation of the flight path (phugoid) must not be so unstable as to cause an unacceptable increase in pilot workload or otherwise endanger the aeroplane. When, in the conditions of S 175, the longitudinal control force required to maintain speeds differing from the trimmed speed by at least $\pm 15\%$ is suddenly released, the response of the aeroplane must not exhibit any dangerous characteristics nor be excessive in relation to the magnitude of the control force released. These requirements must be met with the engine running at all allowable powers

Test	Fuel	Wt	Ht Hp	Power	OAT	LDO	Phugoid
Climb Vyi	8kg	346	3000	Full	6	Well damped	20 secs
Cruise 0.9Hh				MCP			24 secs
Slow Cruise				PFLF			22 secs
Арр				Idle			20 secs

75 Normal Landing – Power Off									
Test	CG	Wt	MPH	Pwr	Considerations				
2	A	L	60	Idle	 (1) A steady gliding approach with a calibrated airspeed of at least [1.3] V_{S1} must be maintained down to the 50 foot height. (2) The landing may not require exceptional piloting skill or exceptionally favourable conditions. (3) The landing must be made without excessive vertical acceleration or tendency to bounce, nose over, ground loop, porpoise, or water loop. 				

sy to land – good elevator control response

Flapless Landing – Touch & Go									
Test	CG	Wt	Ht	MPH	Pwr	Considerations			
4	А	L		60	Idle	Note change in pitch attitude at touch down			
			•	•	•				

Sat - no issues

51 Flapless Take-Off – from Touch & Go									
Test	CG	Wt	Ht	MPH	Pwr	Considerations			
5	А	L		60	Idle	Note change in pitch attitude at rotate			
Sat – no iss	Sat – no issues – easy to pick tail up with full forward stick								

75 Vref-5 L	75 Vref-5 Landing –									
Test	CG	Wt	Ht	MPH	Pwr	Considerations				
6	А	L		50-55	Idle					
All OK	•	•	•							

	1
Flight Number / Configuration	Sortie 4 – Full Forward c of g
Date	14 November 17
Overview	Forward c of $g = performance$ Climbs,. Idle Power Stalls and flight toV _{DF} Take-off & landings Spinning
Handling Pilot/P1	Chris Taylor (flown from front seat)
Safety Pilot P2	None
FTE	None
AUW	391 kg
cg	55-60 mm
Fuel T/O	40 lts
Fuel Ldg	30 lts
ZFW	362 kg (50 kg Ballast on P1 seat)

Airfield Altitude	196	ft	QFE	1010	mb
Wind	180/3kts	knots	OAT	12	°C
Weather (test area)	Overcast	– light winds from	south at altit	ude – no sig turbulence	€ —

Test Timings								
Off Chocks	1315	Landing	1400					
Take-Off	1330	On Chocks	1405					
Flying Time	0:30	Chock Time	0:45					

Ground Ha	Ground Handling									
Test	Fuel	Wt								
Start	28kg	391								
End	70	450								
Satisfactor	Satisfactory – no issues									

Basic/idle Stalling 49 Stall speed 201 Stall demonstration Wings Level 203 Stall characteristics Turning Flight 207 Stall Recovery & warning NB: Full back Stick 2 secs, G Break

Straight (thrust levers closed). Trim the aeroplane above 3000 ft AGL in the required configuration at 1.4 Vs with the throttle closed. Approach the stall in straight flight while decreasing speed at 1 knot/second. Recovery is to be completed by 3000 ft agl.

Test	Fuel	Wt	Time	Pwr	Trim	Buffet	Stall	Wing Drop
Flaps 0	28kg	391	1335	Idle	55	Light	38	Nil

Advanced Stalling Forward C of G & Heavy 49 Stall speed 201 Stall demonstration Wings Level 207 Stall Recovery & warning NB: Full back Stick 2 secs, G Break

4) Power :

i) Engine idling; and

ii) Maximum continuous power, or, if the power-to-weight ratio at maximum continuous power results in extreme nose-up attitudes, demonstration may be carried out with the power not less than that required for level flight in the landing configuration at maximum landing weight and a speed of 1.4 VS0, except that the power may not be less than 75% maximum continuous power. Note 5000 rpm used to give 75% of MCP

Test	Fuel	Wt	Time	Pwr	Trim	Buffet	Stall	Wing Drop
Flaps 0	28	391	1335	5000	50	Light	35	No

49 Stall spe 203 Stall ch 207 Stall R	Advanced Stalling 49 Stall speed 203 Stall characteristics Turning Flight 207 Stall Recovery & warning NB: Full back Stick 2 secs, G Break										
 4) Power : i) Engine idling; and ii) Maximum continuous power, or, if the power-to-weight ratio at maximum continuous power results in extreme nose-up attitudes, demonstration may be carried out with the power not less than that required for level flight in the landing configuration at maximum landing weight and a speed of 1.4 VS0, except that the power may not be less than 75% maximum continuous power. 											
Test	Fuel	Wt	Time	Pwr	Trim	Buffet	Stall	Wing Drop			
Flaps 0 Left	27	390	1335	Idle	50	Light	38	Rolled level			
Flaps 0 Right											
Flaps 0 Left											
Flaps 0 Right				4800	50	Light	35	Rolled level			

Flight Test Report

Doc No.FTR02-2017Issue No.1Date17 Nov 2017Page No39 of 50

143 General			
 S 143 General a) The aeroplane must be safely controlla 1) take-off at maximum take-off power; 2) any steady climb condition; 3) level flight; 4) descent; 5) landing, power on and off; and 6) with sudden engine failure. b) It must be possible to make a smooth turns, reversal of turns and slips) with no and without danger of exceeding the limit with the engine running at all allowable p sudden engine failure. c) Any unusual flying characteristics observed. 	transition from on more than averag t load factor, unde ower settings, inc s from any recom	e flight condition ge piloting skill, a er any probable o luding the effect mended techniq	alertness or strength, operating condition, of power changes an ues must not cause
compliance with the flight requirements a caused by rain must be determined with d) If marginal conditions exist with regard quantitative tests for a minimum weight p the table shown in S.143. This requirement	and any significant the engine runnin I to pilot effort the vilot. In no case m ent must be met w	t variations in flig g at all allowable 'pilot effort' limit ay the limits exc ith the engine ru	ht characteristics powers. s must be shown by eed those prescribed
compliance with the flight requirements a caused by rain must be determined with d) If marginal conditions exist with regard quantitative tests for a minimum weight p the table shown in S.143. This requirement powers. Values in pounds of force as applied to	and any significant the engine runnin I to pilot effort the vilot. In no case m ent must be met w	t variations in flig g at all allowable 'pilot effort' limit ay the limits exc ith the engine ru	ht characteristics powers. s must be shown by eed those prescribed
compliance with the flight requirements a caused by rain must be determined with d) If marginal conditions exist with regard quantitative tests for a minimum weight p the table shown in S.143. This requirement powers. Values in pounds of force as applied to (a) For temporary application:	and any significant the engine runnin I to pilot effort the pilot. In no case m ent must be met w the control wheel or r	t variations in flig g at all allowable 'pilot effort' limit ay the limits exc ith the engine ru udder pedals.	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable
compliance with the flight requirements a caused by rain must be determined with d) If marginal conditions exist with regarc quantitative tests for a minimum weight p the table shown in S.143. This requirement powers. Values in pounds of force as applied to (a) For temporary application: Stick	the engine runnin the engine runnin to pilot effort the bilot. In no case m ent must be met w the control wheel or r	t variations in flig g at all allowable 'pilot effort' limits ay the limits exc ith the engine ru udder pedals.	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable
compliance with the flight requirements a caused by rain must be determined with d) If marginal conditions exist with regard quantitative tests for a minimum weight p the table shown in S.143. This requirement powers. Values in pounds of force as applied to (a) For temporary application: Stick Wheel (applied to rim)	and any significant the engine runnin I to pilot effort the bilot. In no case m ent must be met w the control wheel or r P 20	t variations in flig g at all allowable 'pilot effort' limit ay the limits excu- ith the engine ru udder pedals. R 10	ht characteristics powers. s must be shown by eed those prescribed nning at all allowable
compliance with the flight requirements a caused by rain must be determined with d) If marginal conditions exist with regard quantitative tests for a minimum weight p the table shown in S.143. This requirement powers. Values in pounds of force as applied to (a) For temporary application: Stick Wheel (applied to rim) Rudder Pedal	and any significant the engine runnin I to pilot effort the bilot. In no case m ent must be met w the control wheel or r P 20	t variations in flig g at all allowable 'pilot effort' limit ay the limits excu- ith the engine ru udder pedals. R 10	yht characteristics e powers. s must be shown by eed those prescribed inning at all allowable Y
compliance with the flight requirements a caused by rain must be determined with d) If marginal conditions exist with regard quantitative tests for a minimum weight p the table shown in S.143. This requirement powers. Values in pounds of force as applied to (a) For temporary application: Stick Wheel (applied to rim) Rudder Pedal (b) For prolonged application.	and any significant the engine runnin I to pilot effort the bilot. In no case m ent must be met w the control wheel or r P 20 25 	t variations in flig g at all allowable 'pilot effort' limits ay the limits exc ith the engine ru udder pedals.	yht characteristics e powers. s must be shown by eed those prescribed inning at all allowable Y 40
compliance with the flight requirements a caused by rain must be determined with d) If marginal conditions exist with regard quantitative tests for a minimum weight p the table shown in S.143. This requirement powers. Values in pounds of force as applied to	and any significant the engine runnin I to pilot effort the bilot. In no case m ent must be met w the control wheel or r P 20 25 	t variations in flig g at all allowable 'pilot effort' limits ay the limits exc ith the engine ru udder pedals.	yht characteristics e powers. s must be shown by eed those prescribed inning at all allowable Y 40

S 161 Trim The speeds to achieve lateral, longitudinal and directional trim must lie within 1.3 VS1 and 2.0 VS1 at all engine powers and the extreme c.g. positions.

Test	Fuel	Wt	Time	KIAS	Pwr	Considerations
Flap Up	26	389	1340	1.3Vs1	PFLF	Assess Long & Directional Trim
Flap Up				2.0 Vs1	PFLF	Assess Long & Directional Trim

Flap Up				1.3Vs1	ldle	Assess Long & Directional Trim
Flap Up				2.0 Vs1	ldle	Assess Long & Directional Trim
Flap Up				1.3Vs1	Full	Assess Long & Directional Trim
Flap Up				2.0 Vs1	Full	Assess Long & Directional Trim
All satisfact	tory – air	craft c	ould eas	sily be trimm	ed in all r	equired conditions –

Longitudinal Control

S 145 Longitudinal Control

a) It must be possible at any speed below 1.3 VS1 to pitch the nose downwards so that a speed equal to 1.3 VS1 can be reached promptly.

1) **Test conditions.** All possible configurations and engine powers when trimmed at 1.3 VS1 (where trim control is fitted).

b) It must be possible throughout the appropriate flight envelope to change the configuration (landing gear, wing flaps etc.) without exceptional piloting skill and without exceeding the control forces defined in S 143 d).

c) It must be possible to raise the nose at VDF at all permitted c.g. positions and engine powers.

Test	Fuel	Wt	Time		Pwr	Considerations			
Flap Up	26	389	1340	50	Full	Apply Full Power – maintain speed			
All satisfactory – all test points easy to fly – easy to maintain level flight									

S 147 Lateral and directional control

a) Using an appropriate combination of controls, it must be possible to roll the aeroplane from a steady 30° banked turn through an angle of 60°, so as to reverse the direction of the turn within 5 seconds when the turns are made at speeds of 1.3 VS1 and at VNE.

b) N/A - (Applicable only if control is effected by weight shift

c) The tests required by a) and b) must be performed:

1) where applicable, with the landing gear and wing-flaps retracted and with the landing gear and wing-flaps extended;

2) without encountering uncontrollable rolling tendencies or uncommanded high roll rates; and3) with any uncommanded pitching during the manoeuvre being readily controllable.

Test	Fuel	Wt	Time	MPH	Pwr	Time to Roll
Flap Up	26	389	1340	1.3Vs1	5000	4 secs L-R

Flap Up		1.3Vs1	5000	4 secs R-L
Flap Up		Vne	5500	3 secs L-R
Flap Up		Vne	5500	3 secs R-L

Stick Force per G

S 155 Pitch control force in manoeuvres

The pitch control force during turns or when recovering from manoeuvres must be such that at a constant speed an increase in load factor is associated with an increase in control force. In addition:

a) For conventional control systems the minimum value of this force to apply to the aeroplane a normal acceleration which would impose limit load on the structure must not be less than 7 daN from a trimmed 1 g condition at all speeds up to VNE at which the required normal acceleration can be achieved without stalling, with wing-flaps and, where applicable, landing gear retracted.

Test Fuel	l Wt	Time	KIAS	Pwr	Considerations
-----------	------	------	------	-----	----------------

Stick Force per g evidently higher than at full aft cg which was determined to be the more critical case. Large linear and predictable aft stick in puts required to reach 2g.

23.251 Vibration and buffeting 23.253 High speed characteristics Dive to Vdf										
Test	Test Fuel Wt Time MPH Pwr Considerations									
Clean										

	art	3000) ft		IOAT	7	°C	Sch	eduled Vdf			111
A	titude											MPH
	nd titude	2000)	ft	PEs	5		Vdf	KIAS Achie	ved?		111 MPH
Veight ai	t or unus nd Respo ropeller b	onse of	flying C	Controls		ACC ACC ACC						
t must b	e possibl	le to re	cover fr	om an ov	erspeed	d condit	ion at Vo	lusing	the primary	longitud	linal contro	ol alone
ssess L	SS = Ver	ry Stab	le									
ssess L	DO = He	avily d	amped									
As with a	ll open co	ockpit a	aircraft ł	niah spee	d fliaht	is neve	r comfort	able bu	t the aircraf	continu	ued to acc	elerate
				roblems -								
be damp) Free; 2) Fixed 2) Any Ic 2) Any Ic 20 20 20 20 20 20 20 20 20 20 20 20 20	ombined and with and period table ind as of S 1 speed b	the pr od osc crease 75, th by at le	imary c illation in pilo e longi east ±1	ontrols: of the fli t workloa tudinal c 5% is su	ght pat ad or of ontrol f ddenly	h (phu herwis orce re releas	goid) mu e endar equired t ed, the i	ust not iger the o main respon	the stalling be so unst e aeropland tain speed se of the a to the mag	able as e. Whe s differ eroplar	to cause n, in the ing from the ne must n	e an the lot
									running at			
Test	Fuel	Wt	Ht Hp	Power	0/	AT L	DO				Phugoid	
Climb /yi	25	388	3000	Full	11	V	Vell darr	ped				
Cruise).9Hh				MCP		۷	Vell darr	ped				
Slow Cruise				PFLF		۷	Vell dam	ped				
Арр				Idle		V	Vell dam	ped				

Spinning – The spins were initiated with the throttle set as required to give idle power, 5000rpm or full power and the nose raised to slow down until 45-50MPH was reached when full back stick and full rudder was applied. Recoveries were commenced after $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 or $1\frac{1}{2}$ or 2 complete turns. With a forward cg the aircraft tended to enter a spiral dive on each occaision – however with power applied the aircraft entered a spin – but as soon as the throttle was closed the aircraft tended to fall into a spiral dive – therefore recovery was generally achieved within approx. $\frac{1}{2}$ a further turn unless annotated as such. There was only one configuration as no flaps were fitted

Normal recovery was to close the throttle – apply full opposite rudder to the spin direction – then move the stick centrally forward progressively until the spin stopped.

Turns	Left/Right	Abuse	Recovery	Comment
1⁄4	L	Normal	Spiral Dive	
1⁄4	R	Normal		
1/2	L	Normal		
1/2	R	Normal		
1	L	Normal		
1	R	Normal		
1	L	Normal		
1	R	Normal		
2	L	Power at 5000 rpm	Normal	Aircraft enterd a spin with
2	L	Full Power	Normal	power & high nose up –
				however as the throttle was
				closed the aircraft fell out of
				thew spin into a spiral dive
Spinning wit	h forward cg v	vas difficult to achieve	unless the aircraft	was forced into it. Recoveries
were easy w	ith the aircraf	t tending to recover its	elf. As a result the	spin matrix with forward cg
was reduced	d to concentra	te on aft cg spinning.		

Test	CG	Wt	Ht	KIAS	Pwr	Considerations
	Fwd	386			Idle	 (1) A steady gliding approach with a calibrated airspeed of at least [1.3] V_{S1} must be maintained down to the 50 foot height. (2) The landing may not require exceptional piloting skill or exceptionally favourable conditions. (3) The landing must be made without excessive vertical acceleration or tendency to bounce, nose over, ground loop, porpoise, or water loop.

reached/required

75 Simulate	75 Simulated Emergency Condition Flapless Landing – Touch & Go											
Test	Test CG Wt Ht KIAS Pwr Considerations											
4	F	386			Idle	Note change in pitch attitude at touch down						
Sat – no iss	Sat – no issues											

51 Flapless	51 Flapless Take-Off – from Touch & Go											
Test	CG	Wt	Ht	KIAS	Pwr	Considerations						
5	F	386			Idle	Note change in pitch attitude at rotate						

Easy – no issues

 75 Vref-5 Landing –

 Test
 CG
 Wt
 Ht
 KIAS
 Pwr
 Considerations

 6
 F
 386
 Idle
 Idle

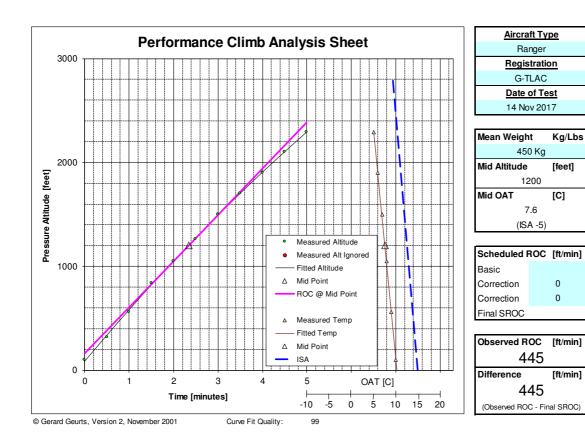
 Short field technique 45 MPH at threshold – good control – good elevator authority – good field of view - sat

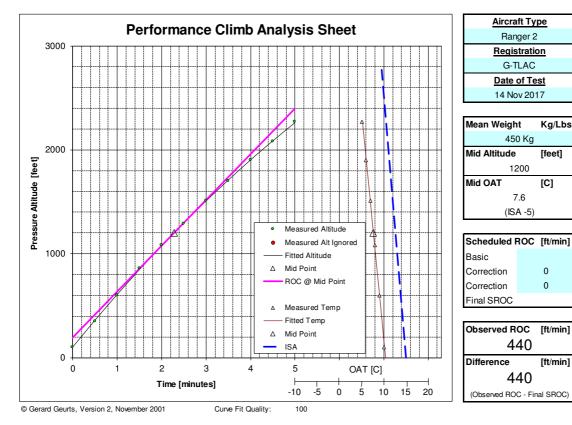
Doc No.	FTR02-2017
Issue No.	1
Date	17 Nov 2017
Page No	45 of 50

Flight Number / Configuration	Sortie 5 – MAUW
Date	14 November 17
Overview	Forward c of g = performance Climbs,. Idle Power Stalls Take-off & landings
Handling Pilot/P1	Chris Taylor
Safety Pilot P2	James Milne
FTE	None
	None
AUW	456 kg (on taxi)
AUW	456 kg (on taxi)
AUW	456 kg (on taxi) 160 mm

Airfield Altitude	196	ft	QFE	1010	mb
Wind	180/3kts	knots	OAT	12	°C
Weather (test area)	Overcast	– light winds from	south at altit	ude – no sig turbulence) —

Test Timings									
Off Chocks	1410	Landing	1445						
Take-Off	1415	On Chocks	1455						
Flying Time	0:30	Chock Time	0:45						




Climb da	Climb data												
	ht	Т			ht	Т	Remarks						
Time (mins)		°C		Time (mins)		°C							
0.0	100	10		0.0	100	10							
0.5	320			0.5	350								
1.0	560	9		1.0	600	9							
1.5	840			1.5	860								
2.0	1050	8		2.0	1080	8							
2.5	1260			2.5	1290								
3.0	1500	7		3.0	1510	7							
3.5	1700			3.5	1700								
4.0	1900	6		4.0	1900	6							
4.5	2100			4.5	2080								
5.0	2290	5		5.0	2270	5							

Flight Test Report

Doc No.	FTR02-2017
Issue No.	1
Date	17 Nov 2017
Page No	47 of 50

Basic/idle Stalling 49 Stall speed 201 Stall demonstration Wings Level 203 Stall characteristics Turning Flight 207 Stall Recovery & warning NB: Full back Stick 2 secs, G Break

Straight (thrust levers closed). Trim the aeroplane above 3000 ft AGL in the required configuration at 1.4 Vs with the throttle closed. Approach the stall in straight flight while decreasing speed at 1 knot/second. Recovery is to be completed by 3000 ft agl.

Test	Fuel	Wt	Time	Pwr	Trim	Buffet	Stall	Wing Drop
Flaps 0	28	450		Idle	55	Light	38	Nil

Numerous Take-Off and landings were carried out during the formal evaluation. At light weight the aircraft's take-off roll was minimal with the aircraft leaping into the air. At MAUW with 2 POB take-offs were Tiger Moth like with full forward stick being applied once rolling to lift the tail – which was progressively brought to the rear to keep the aircraft level. The aircraft flew off at around 45 MPH. Testing was conducted on soft and damp grass – Runway 27 parallel to the taxiway at Little Snoring – wind was very light and directly across the strip with no headwind component.

	Direction	Distance	Comment
Take-Off	270	100	
Landing	270	105	
Take-Off	270	95	
Landing	270	100	
Take-Off	270	100	
Landing	270	90	
Take-Off	270	100	
Landing	270	105	
Take-Off	270	95	
Landing	270	100	
Take-Off	270	100	
Landing	270	90	
The take-off and land v	vas accomplished in app	rox. 100 m – Recommend n	nin of 130m be quoted in the AFM

Flight Number / Configuration	Sortie 6 – Full Aft c of g
Date	14 November 2017
Overview	Full Aft cg = spinning
Handling Pilot/P1	Chris Taylor
Safety Pilot P2	None
FTE	None
AUW	353 kg
cg	197 mm
Fuel T/O	21 lts
Fuel Ldg	10 lts
ZFW	338

Airfield Altitude	196	ft	QFE	1010	mb
Wind	180/2	knots	OAT	5	°C
Weather (test area)	Excellent – light southerly winds no turbulence				

Test Timings			
Off Chocks	1505	Landing	1600
Take-Off	1515	On Chocks	1605
Flying Time	0:45	Chocks Time	1:00

Spinning – The spins were initiated with the throttle set as required to give idle power, 5000rpm or full power and the nose raised to slow down until 45-50MPH was reached when full back stick and full rudder was applied. Recoveries were commenced after $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 or 1½ or 2 complete turns. Recovery was generally achieved within approx. ½ a further turn unless annotated as such. There was only one configuration as no flaps were fitted

Normal recovery was to close the throttle – apply full opposite rudder to the spin direction – then move the stick centrally forward progressively until the spin stopped. In practice with an aft cg this was usually of the order of 1-2 inches of movement forward.

The incipient recovery was tested after the first turn by centralising the controls – the aircraft spin stopped almost immediately

Turns	Left/Right	Abuse	Recovery	Comment
1/4	L	Normal	Normal	
1/4	R	Normal	Normal	
1/2	L	Normal	Normal	
1/2	R	Normal	Normal	
1	L	Normal	Incipient	
			Recovery	
1	R	Normal	Incipient	
			Recovery	
1	L	Normal	Normal	
1	R	Normal	Normal	
2	L	Normal	Normal	
2	R	Normal	Normal	
2	L	In Spin Aileron	Normal	Sped Up
2	L	Out Spin Aileron	Normal	
2	R	In Spin Aileron	Normal	Sped Up
2	R	Out Spin Aileron	Normal	
2	L	Power at 5000 rpm	Normal	
2	L	Full Power	Normal	
2	L	In Spin Aileron	In Spin Aileron	
2	L	Out Spin Aileron	Out Spin Aileron	
2	L	Normal	Reverse	With full rudder applied if the
2	R	Normal	Reverse	stick was moved forward off
				the stop the spin rotational
				rate increased. However
				spin recovery was achieved
				normally by applying full
				opposite rudder with the stick
				initially moved aft then forward. The aircraft
				commenced recovery as
				soon as the stick was moved
				forward but due to the higher
				spin rate took just over a full
				turn to stop
			1	